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ABSTRACT A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed
counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the
number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are
lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from
one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation
theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment
considered and is of the order 5–10%. Both classes of fluctuation result in transient bends toward the side of greater counterion
density. The bending amplitudes are ;15% of the total root-mean-square bends associated with the persistence length of DNA.
We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the
aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support
the idea that counterions may exert some modulating influence on the fine structure of DNA.

INTRODUCTION

A prominent feature of the double-helical sugar-phosphate

skeleton of DNA is the negative unit charge on each phos-

phate group—DNA is a strong polyelectrolyte. There exists

a body of experimental, computational, and theoretical evi-

dence suggesting a significant contribution from phosphate

electrostatics to the overall force balance that determines

DNA structure. For example, DNA has been shown to bend

away from a phantom protein modeled by a computer as

merely a protein-shaped region of low dielectric constant (1).

The bend is accomplished by large-scale opening of the

minor groove as interstrand phosphate-phosphate repulsions

seek lower energy by moving away from the low-dielectric

protein to remain immersed in a high-dielectric environment.

In another indication of structural electrostatic effects, DNA

deposited on mica surfaces coated with positively charged

poly-L-ornithine presents itself as a wormlike chain but with

dramatically enhanced flexibility, its persistence length re-

duced by up to a factor of five from its familiar value of ;150

basepairs in aqueous salt solution (2). Comparable fivefold

reductions of the persistence length in single-molecule stretch-

ing experiments are induced by addition of the trivalent cation

cobalt hexamine in stretch conditions preventing DNA con-

densation (3).

Much attention has focused on the consequences of lat-

erally asymmetric reduction of DNA phosphate charge (4–7).

Chemical substitution of neutral groups for phosphates on

one side of the DNA results in a bend of the double-helical

axis toward the neutralized side. Positively charged ions

tethered near the phosphates on one side of DNA has the

same effect; the DNA bends toward the side of electrostatic

neutralization of the phosphate charge. Tethering negatively

charged ions near phosphates on one side of DNA forces a

bend toward the opposite side. These observations are in the

laboratory and subject to conceivable if unlikely interpreta-

tions other than the most transparent one. A computer, how-

ever, can unequivocally turn off the ionic charge on selected

phosphate groups, and when it does so on only one side of

the DNA but not the other, finds a lowest energy conforma-

tion that bends toward the side with annihilated charge (8).

The detailed structural changes in helicoidal parameters

that are induced by the asymmetric phosphate neutralization,

and that act in concert to produce a bend, have been cata-

logued (8).

A long lifetime molecular dynamics trajectory features the

presence of counterions near sites of deformation of the

double-helical axis of DNA (9). However, it was noted that a

causal relationship remains to be established. No correlation

of counterion proximity and minor groove width was de-

tected in either this trajectory or another comparable one

(10). Neither simulation appears to have addressed the

question of asymmetric counterion fluctuations. What struc-

tural effects might occur if a transient imbalance in the coun-

terion distribution around DNA creates greater net charge on

one side of the DNA relative to the other? The question is

significant, because asymmetric fluctuations of the solvent

distribution around DNA, including counterions as a com-

ponent of the solvent, are the cause of the random Brownian

bending movements of DNA segments that determine DNA

persistence length. In turn, the finite persistence length places

limits on the rigidity of the DNA molecular architecture,
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which must change at least slightly to accommodate the

bending motions.

This article is intended to provide some information

toward clarifying possible structural effects of asymmetric

counterion fluctuations. In this case, we cannot compare our

results with experimental data or computer simulations,

neither of which currently exist as far as we are aware. It is

therefore important to have some confidence in the realism of

the theoretical model employed. We use the same two-sided

model that originally was able to predict significant bending

of DNA toward the side where its phosphate charge is

abolished (11,12). We recall the success of laboratory and

computational efforts to test the conclusions from the model,

as discussed above. The model correctly predicts not only

the existence of the bend but also provides a realistic value of

the bending angle. A modeled six-basepair DNA segment

with no phosphate charge on one side was calculated to bend

through 9�, whereas laboratory measurements and computer

simulations have observed values ranging from a few degrees

to ;21�, depending on the methods used to neutralize the

phosphate charge, as discussed and referenced above.

The article is organized in the following way. We begin

with specification of the model and a qualitative overview

of the analysis and results. The formal part of the article is

launched with a calculation of the electrostatic free energy

and its minimization to find the equilibrium state of the coun-

terions. Next, formulas are derived for the root-mean-square

of the amplitude of asymmetric fluctuations in the counterion

distribution. Finally, we give formulas for the transient

bending angles generated by these asymmetries. Numerical

results are presented alongside the formulas for the transients

of counterion distribution and bending. A concluding section

summarizes the results and also touches on the atomistic

origin of Brownian movement, including the random bending

motions that determine the persistence length of a polymer.

There it is pointed out that an approach to the problem by

molecular dynamics simulations would have to identify the

infrequent coordinated sequences of asymmetric solvent

fluctuations responsible for an observable elementary Brown-

ian step or bend.

DESCRIPTION OF THE MODEL AND OVERVIEW
OF THE ANALYSIS AND RESULTS

We employ a minimal model that, as discussed in the Intro-

duction, has been successful in the treatment of problems

related to the one of interest here (11). DNA is idealized as a

pair of parallel lines, each equipped with uniformly spaced

sites of unit negative charges representing the phosphate

groups. The spacing between consecutive charge sites on

each line is designated as b, while the perpendicular distance

between the lines is a. There are P charge sites on each line,

signifying a DNA of P basepairs. The spacing b has the value

0.34 nm, the step height between basepairs of B-form DNA.

The distance a between the two parallel lines equals 2 nm,

close to the value of the diameter of the B-form double helix.

In this way, with only two structural parameters fixed by the

actual structure of DNA, the model captures the reality that

the electrostatic charge on one lateral face of DNA can be

modulated independently of the charge on a diametrically

opposite face.

Counterions condense on each of the two parallel lines.

Each charge site on each line has charge �q, with q the

charge on a proton, representing the unit negative valence of

the DNA phosphate group. However, this charge is reduced

by the factor (1 – ui) to account for reduction of the net

charge by condensed counterions. The quantity ui is the num-

ber of condensed counterions per phosphate group, and the

subscript i enumerates the two sides, i¼ 1, 2, so that there are

Pui counterions condensed on side i. The notation u for the

number of condensed counterions may not be optimal in an

article that will stress bending angles, but we retain it for

consistency with previous work.

The mathematical analysis of the model proceeds through

counterion condensation theory. A recent discussion of the

theory is available for three models, a single line of charge,

a single helix, and a double helix (13). See also an earlier

reference for the single line of charge (14). The two helical

models are intractable for the problem at hand. The single

line of charge does not contain enough information for the

present problem, but a reader who wishes to follow in detail

the calculations below for the model of two parallel charged

lines may find the indicated references useful. Here, we point

out only some qualitative features applicable to all the

models.

The first part of the analysis is to find the free energy

minimum, that is, the equilibrium state. There are two quan-

tities that must be determined, the number of condensed

counterions, and the internal free energy, or partition func-

tion, of the condensed layer of counterions. The former is

determined mathematically by removing a divergence in

the free energy. The physical meaning of removal of the

divergence is that the favorable entropy of dissociation of

counterions from the polyion is balanced by the unfavorable

energy of dissociation. The entropy of dissociation, as in

any thermodynamic system, is logarithmic in concentration.

The energy of dissociation, unlike most systems, is also

logarithmic in concentration due to the logarithmic potentials

of the essentially cylindrical polyion models. For B-form

DNA the number of undissociated, or condensed, counter-

ions equals 0.76 times the number of phosphates (14), re-

gardless of the model used (13).

The predicted number of condensed counterions has been

verified repeatedly, most recently by both Monte Carlo and

molecular dynamics simulations (9,15). An outer inflection

point in a plot of number of counterions as a function of

distance from the simulated DNA has been observed (15).

The physical meaning of the inflection point is that there is a

spatial separation, a gap, between the condensed layer of

counterions and the more diffuse counterion cloud that lies
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further out. As the gap is crossed by a variable point that

moves out from the polyion, counterions do not accumulate,

hence the inflection. The physical distinction between con-

densed and diffuse counterion layers is visually obvious in

computer graphics (9,15). In the molecular dynamics sim-

ulations, the number of counterions lying inside the inflection

point (dubbed ‘‘the Manning radius’’ by the authors) is

observed numerically to equal 0.76 times the number of

phosphates (9,15).

It might be thought that the calculation of the internal free

energy of the condensed layer would present difficulties.

However, it is obtained in a most straightforward way, once

the logarithmic divergence is removed, from the obvious

minimization condition that the derivative of total free

energy with respect to number of condensed counterions

vanish. No new parameters are introduced. The free energy

of the condensed layer depends on the model used. In a

simple model, the condensed counterions can be portrayed as

freely translating within a cylindrical shell surrounding a

DNA cylinder. The thickness of the shell predicted by the

theory, with the introduction of no new parameters, then

equals 7 Å. The most recent of the molecular dynamics com-

putations discussed above observes the inflection point that

marks the boundary of the condensed layer to be located at

9 Å from the surface of the simulated all-atom DNA (9).

The result for the equilibrium state of the two-sided model

required in this article is as expected. The total number of

condensed counterions is 76% of the total number of phos-

phate groups, and the condensed counterions are equally dis-

tributed on each of the two identical sides of the model DNA.

The internal free energy of the condensed counterions is not

presented, as it is not needed for the problem at hand.

In a next stage of the calculation, thermal fluctuations of

the condensed counterion distribution away from uniformity

are considered. For example, due to a fluctuation, the number

of condensed counterions on one side of the DNA may

transiently deviate from 76% of the number of phosphate

groups on that side, while the number of counterions con-

densed on the other side remains at its equilibrium value. The

calculation is an application of textbook statistical mechan-

ics. No new parameters are introduced into the model at

this stage. We conclude that root-mean-square asymmetric

fluctuations away from the equilibrium number 0.76 of con-

densed counterions are ;5–10%. For example, the number

of counterions condensed on one face of the DNA might be

72% of the number of phosphates on that face, while the

number on the other side might be 80% of the number of

phosphates.

In the equilibrium state the electrostatic forces on each

side of the DNA are in balance, since the net charge on each

side (phosphate charge minus charge of condensed counter-

ions) is the same. But if the net charge on the two sides is

transiently different, the balance of forces is upset, and there

will be a tendency of the DNA to tilt, or bend, toward the side

with the smaller net charge. We are able to calculate the force

imbalance (more precisely, the electrostatic bending torque)

as an application of counterion condensation theory without

the introduction of new assumptions or parameters.

The tendency to bend produced by the counterion im-

balance is resisted by the elastic stiffness of DNA against

bending. If the stiffness is sufficiently great, the bend will

be insignificant. For an estimate of the bending amplitudes

using standard elasticity theory, we need the numerical value

of the Hooke’s Law bending constant B for DNA. There is a

direct correlation between B and the persistence length of

DNA through a well-known formula of polymer theory. We

use the measured value of the persistence length. Our cal-

culations are in 0.1 M aqueous NaCl, and measurements

of persistence length at this ionic strength from different

laboratories converge on a consensus value of ;150 DNA

basepairs, or 50 nm. Finally, we obtain our main result, that

transient electrostatic force imbalances created by asymmetric

fluctuations of the distribution of counterions can generate

modest but structurally significant transient bending deforma-

tions of a few degrees angular amplitude.

ELECTROSTATIC FREE ENERGY AND THE
EQUILIBRIUM STATE

Let Ga be a generic free energy component, and reduce it to

dimensionless form ga ¼ Ga/kBT, where kBT is Boltzmann’s

constant times temperature. The first two of these compo-

nents (13,14) are the free energies involved in transferring

Pui counterions from bulk solution, where the counterion

concentration is c, to the condensed counterion layer on side

i, i ¼ 1, 2,

gtransfer;i ¼ Pui ln
1000ui

cQ

� �
: (1)

Here, Q is an internal partition function for the condensed

counterions, which we take to be the same for both sides. The

assumption that short-range interactions among condensed

counterions can be neglected in the present analysis allows

us to take Q as independent of the condensed fractions ui. Its

units are chosen as cm3, and a simple physical interpretation

identifies it as the local volume of the condensed layer per

charge site (14). The factor 1000 converts to liters, since

c is in units of molarity.

The next two free energy components (13,14) are the

charge-charge repulsions within each side i, i ¼ 1, 2,

gel;i ¼ �ð1 � uiÞ2
jP ln kb� ð1 � uiÞ2

jP ln
1 � e

�kb

kb

� �
: (2)

A quantity j has been introduced in this formula. It is a measure

of charge density on each side (identical for both sides),

and it is dimensionless. Its definition is

j ¼ q
2

DkBTb
; (3)
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where D is the dielectric constant of bulk solvent. Notice that

j is the ratio of the Bjerrum length q2/DkBT to the charge

spacing b of each side. The Bjerrum length is the distance at

which the electrostatic interaction energy of two point unit

charges equals thermal energy kBT. It equals ;0.71 nm in

water at room temperature. For B-form DNA, j is approx-

imately equal to 2.1. Note again that j is a reduced charge

density for each side; the familiar value 4.2 for the single-line

electrostatic model of DNA (14) is given by 2j in this article.

The Debye screening parameter k has also been intro-

duced in Eq. 2. Its reciprocal is the Debye screening length of

the univalent/univalent salt solution (like NaCl) in which the

DNA is immersed. The numerical value of 1/k is ;0.96 nm

in aqueous 0.1 M NaCl at room temperature. Values at other

salt concentrations may be calculated from the fact that k is

proportional to the square-root of salt concentration c. Notice

that in assumed conditions of excess salt over DNA concen-

tration, the salt concentration and the counterion concentra-

tion (which appears in Eq. 1) are both equal to c. The general

formula for k is readily available in textbooks covering

Debye-Hückel theory.

Eq. 2 itself is obtained in the following way (13,14). The

repulsive screened Coulomb interaction energy in units of

kBT between a pair of charge sites on side i separated by

a distance that is an integral multiple nb of the spacing b is

(1 – ui)
2j exp( – knb)/n, since each site bears net absolute

charge (after counterion condensation) (1 – ui)q. Equation 2

reflects summation over all pairs from nearest neighbors on

to infinite separation. Recalling that k ; c1/2, we recognize

that the series is logarithmically divergent as counterion con-

centration c/ 0. The divergence is separated out as the first

term on the right-hand side of Eq. 2, leaving as the second

term a small concentration correction that converges to zero

in the limit c / 0.

The next and final free energy component describes the

electrostatic coupling between the two sides (16),

gel;12 ¼ �2Pjð1 � u1Þð1 � u2Þðln
1

2
ka1 gÞ1 2Pjð1 � u1Þ

3ð1 � u2Þ½K0ðkaÞ1 ln
1

2
ka1 g�: (4)

This equation is obtained by summing screened Coulomb

potentials between all charge pairs, one member of the pair

from side 1 with net absolute charge (1 – u1)q, the other

member of the pair from the side 2 with net absolute charge

(1 – u2)q. The distance between sides is a (for DNA, it is the

diameter of the double helix), and the modified Bessel func-

tion of the second kind K0(ka) appears when the sum is re-

placed by an integral. The Bessel function is logarithmically

divergent as c / 0,

K0ðkaÞ;� ln
1

2
ka� g; (5)

where g is Euler’s constant, g ¼ 0.5772. . ., and the di-

vergence is separated out as the first term on the right-hand

side of Eq. 4, while the second term is a concentration

correction that converges to zero as c / 0.

The total reduced free energy g is the sum of the com-

ponents,

g ¼ gtransfer; 1 1 gtransfer; 2 1 gel; 1 1 gel; 2 1 gel; 12: (6)

Each of the five components of g contributes to a divergent

overall ln c term,

g ¼ �P u1 1 u2 1
1

2
ð1 � u1Þ2

j1
1

2
ð1 � u2Þ2

j

�

1 ð1 � u1Þð1 � u2Þj
�

lnc1 . . . ; (7)

where we have again recalled that k ; c1/2, and where the

omitted terms converge as c / 0.

Following the standard theory of counterion condensation

(13,14), we take a next step of differentiating with respect to u1,

@g

@u1

¼ �P½1 � jð2 � u1 � u2�lnc1 . . . : (8)

To have an equilibrium state in dilute solution, we remove

the logarithmic singularity by setting the bracketed factor

to zero,

u1 1 u2 ¼ 2 � 1

j
: (9)

Working with u2 instead of u1 gives exactly the same

equation, so thus far, we have only a single equation for the

two unknowns, the equilibrium values of u1 and u2. There is,

however, an obvious second condition for the equilibrium

(average) values, namely, that they must be equal, since the

two sides are identical. With Æuæ designating the equal aver-

age values of u1 and u2, Eq. 9 is solved as

Æuæ ¼ 1 � 1

2j
: (10)

Counterion condensation emerges from the competition of

long-range energy and entropy (14). Eq. 10 is therefore an

expected result, as it states that the average condensation

fraction for two parallel lines at a fixed distance, each of

charge density j, is the same as for a single line of charge

sites with twice the charge density.

For a complete equilibrium state, it is necessary that the

omitted convergent expression in Eq. 8 also equal zero, as

well as the corresponding expression in @g/@u2. This re-

quirement places a self-consistency condition on the internal

partition function, which we do not pursue here, since there is

no explicit need for it in subsequent development.

ASYMMETRIC COUNTERION FLUCTUATIONS

Class I counterion fluctuations

We define Class I fluctuations as those for which u1 fluctuates

while u2 remains fixed at its average value. The physical
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event is that some of the counterions condensed on side 1 are

transiently lost to bulk, or additional counterions from bulk

condense on side 1.

We need the second derivative of g with respect to u1 with

u2 fixed,

@
2g

@u
2

1

¼ P
1

Æuæ
� 2jlnð1 � e

�kbÞ
� �

; (11)

where it is understood that both u1 and u2 have been eval-

uated at their common average value Æuæ, Eq. 10.

Let Dg be the deviation g(u1) – g(Æuæ) of the free energy

from its average, and expand Dg out to quadratic order with

vanishing first derivative,

Dg ¼ 1

2
ðu1 � ÆuæÞ2

P
1

Æuæ
� 2jlnð1 � e

�kbÞ
� �

: (12)

Fluctuation of u1 at fixed u2 constitutes a single degree of

freedom, and the thermal average value of Dg equals 1/2.

Averaging both sides of Eq. 12 then produces the mean-

square fluctuation of u1 as

Æðu1 � ÆuæÞ2æ ¼ Æuæ=P
1 � 2jÆuælnð1 � e

�kbÞ
; (13)

where Æuæ is given by Eq. 10.

Table 1 gives some calculated values of the root-mean-

square fluctuation of u1 as a function of segment length N in

DNA basepairs (N ¼ P, the number of charges on each side

of our model DNA). For example, at 0.1 M salt concentra-

tion, a 10-basepair segment has 76 6 12% of the phosphate

charge on one side compensated by condensed counterions,

whereas, if the statistical count is performed on a longer

30-basepair segment, the average charge compensation on

one side with fluctuation limits is 76 6 7%.

Class II counterion fluctuations

In this family of fluctuations, some of the counterions con-

densed on one side of the DNA diffuse over to the other side.

The total number of condensed counterions Pu1 1 Pu2

remains constant at its average value 2PÆuæ. In the reduced

free energy g(u1, u2), we may therefore make the substitution

u2 ¼ 2Æuæ – u1, calculate the second derivative with respect

to u1, and proceed as before. The result for the mean-square

fluctuation,

Æðui � ÆuæÞ2æ ¼ Æuæ=2P

1 � 2jÆuæ½lnð1 � e
�kbÞ1K0ðkaÞ�

; (14)

may be applied to either side i, but it must be remembered

that the fluctuations on the two sides are coupled; if coun-

terions have moved from side 2 to side 1, then u1 – Æuæ ¼
Æuæ – u2.

Numerical evaluation of this coupled fluctuation as the

root-mean-square (square-root of right-hand side of Eq. 14)

is illustrated by the entries in Table 2. As examples, charge

compensation by condensed counterions on one side of a

10-basepair segment can increase in a root-mean-square

fluctuation from 76% to 85%, while on the other side

charge compensation has fallen to 67% (i.e., du ¼ 60.09).

For a 30-basepair segment, the corresponding fluctuation is

81% on one side and 71% on the other.

BENDING FLUCTUATIONS

In the previous section, we calculated root-mean-square fluc-

tuations in the condensed counterion distribution that result

in momentary asymmetry of the charge density in our two-

sided DNA model. Here we estimate the amplitudes of the

bending fluctuations caused by the counterion asymmetries

(or, more precisely, by a succession of concerted asymme-

tries (17)).

The starting point is a calculation of the stretching force on

each of the two DNA sides due to phosphate-phosphate

repulsion (11). Let G be the total unreduced polyelectrolyte

free energy from the previous section (G ¼ kBTg, g from

Eq. 6). The electrostatic force that stretches side i, i¼ 1, 2, is

Fi ¼ �@G

@Li

¼ � 1

Pi

@G

@bi

; (15)

where in the derivatives the length Lj and the charge spacing

bj of the other side, j 6¼ i, are held fixed. In the formula for G
in the previous section, the spacings b1 and b2 must be made

explicit before setting each of them to their common value b
(but the number of charges P1 and P2 on each side have their

common value P throughout the stretching process, even if

we make them explicit for the sake of physical transparency).

Thus, in Eq. 2, for the intrastrand repulsive free energy we

replace the factor jP by jiPi, i¼ 1, 2, and we symmetrize the

coupling electrostatic free energy of Eq. 4 with replacement

of jP by (1/2)(P1j2 1 P2j1). We then find that

Fi ¼ ðkBTj=bÞ ð1 � uiÞ2 kb

e
kb � 1

� lnð1 � e
�kbÞ

� ��

1 ð1 � u1Þð1 � u2ÞK0ðkaÞ
�
; (16)

TABLE 1 Class I counterion fluctuations at 0.1 M NaCl

N, bp du

10 0.125

30 0.072

50 0.056

TABLE 2 Class II counterion fluctuations at 0.1 M NaCl

N, bp du

10 0.092

30 0.053

50 0.041
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where the values j and b common to the two sides have been

resubstituted after differentiation.

The stretching forces Fi(u1, u2) in Eq. 16 pertain to

arbitrary binding fractions ui. The forces needed for the bend-

ing calculation are the excess forces DFi ¼ Fi(u1, u2) – Fi(Æuæ,
Æuæ) relative to the equilibrium values from Eq. 10,

DFi ¼
kBT

b
jð1 � uiÞ2 � 1

4j

� �
kb

ekb � 1
� lnð1 � e�kbÞ

� ��

1K0ðkaÞ jð1 � u1Þð1 � u2Þ �
1

4j

� ��
: (17)

Class IA bending fluctuations

Bending fluctuations of Class IA are defined to be those

caused by a certain subfamily of Class I counterion fluc-

tuations. In Class I counterion fluctuations, the bulk solution

is a source or sink of counterions for side 1 of the DNA

model, while the number of counterions on side 2 remains

fixed at its equilibrium value. Class IA bending fluctuations

are caused by transient increase of counterions condensed on

side 1 (bulk solution is a source of condensed counterions for

side 1), thus causing excess neutralization of the phosphate

charge on side 1. The electrostatic forces stretching both

sides are therefore diminished, but asymmetrically, with the

weakening of the stretch being much more substantial on

side 1 than on side 2. The net result is equivalent to the effect

produced by asymmetrically placed compressive loads on

the DNA that tend to bend it toward side 1.

Let w1 be the compression load on side 1. As a positive

quantity, it equals the absolute value of DF1 from Eq. 17 with

i ¼ 1, u1 greater than Æuæ, and u2 ¼ Æuæ ¼ 1 – (1/2j). In

writing the following expression, we simplify by dropping

the subscript on u1,

w1 ¼
kBT

b

1

4j
� jð1 � uÞ2

� �
kb

e
kb � 1

� lnð1 � e
�kbÞ

� ��

1
1

2
K0ðkaÞ

1

2j
� 11 uÞ

� ��
: (18)

For the smaller compression load w2 on side 2, we have

the absolute value of DF2, again from Eq. 17 but with i ¼ 2,

and again with u1 greater than Æuæ and u2 ¼ Æuæ ¼ 1 – (1/2j).

The subscript is dropped from u1,

w2 ¼
kBT

2b
K0ðkaÞ

1

2j
� 11 u

� �
: (19)

A rod subjected to longitudinal compressive loads on both

sides of its central axis clearly must bend toward the side

subject to the heavier load. The rod assumes the shape of a

portion of a sine wave with maximum curvature halfway

along its length. The mechanical problem has been analyzed

previously, resulting in a formula for the radius R of maxi-

mum curvature (11),

R ¼ 2B

aðw1 � w2Þ
cos

1

2
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 1w2

B

r !
: (20)

The factor 2 appears here, because the eccentricity, that is,

the offset distance of the loads from the central axis, is equal

to half the diameter a of the rod. The loads w1 and w2 are

given by Eqs. 18 and 19, respectively, which in turn are

functions of the nonequilibrium number u of counterions

condensed on the inner side of the bend. The numerical value

of the Hooke’s Law bending modulus B, which causes

elastic resistance to the bend, is obtained from a well-known

formula (18) as the product kBT times the experimentally

determined persistence length of DNA, ;150 bp, or 50 nm.

We evaluate R when u exceeds its equilibrium value by a

root-mean-square fluctuation, given by Eq. 13.

It is easier to grasp the geometrical meaning of an angle

than of a radius of curvature, so we also compute the total

bending angle a ¼ L/R (angle between the directions at the

two ends of the rod segment) under the assumption that

the radius of curvature R given by Eq. 20 is uniform along

the rod length. This approximation to the angle through

which the deformed rod segment is bent is an overestimate.

Table 3 lists some values of a as a function of the length of

the segment for DNA parameters with length L converted

to number of basepairs N through L ¼ (N – 1)b. Table 3 also

lists the angle per basepair, which is a direct measure of the

curvature of the segment. The curvature decreases slightly as

the number of basepairs in the segment increases.

Class IB bending fluctuations

In class IA fluctuations of the condensed counterion distri-

bution, bulk solution is a source of additional counterion

condensation on side 1, while the number of counterions

condensed on side 2 remains invariant. Class IB fluctuations are

characterized by bulk solution acting as a sink for side 1. Thus,

side 1 relinquishes counterions to bulk, so that u1 becomes less

than Æuæ, while u2 remains equal to the average value 1 –

(1/2j). There is a deficit of counterions on side 1, so the

phosphate-phosphate stretching force on side 1, and to a lesser

extent on side 2 (which interacts with side 1), increases over

its average value. The loads w1 and w2 are now tensile

(stretching). They are equal to the absolute values of DF1 and

DF2, respectively; and hence, with the Class IB conditions on

ui, to the negatives of the right-hand sides of Eqs. 18 and 19.

The rod is subjected to longitudinal tensile loads w1 and

w2 eccentrically placed, respectively, on either side of the

TABLE 3 Class IA bending fluctuations at 0.1 M NaCl

N a, deg a/N, deg/bp

10 1.7 0.17

30 3.9 0.13

50 6.1 0.12
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central axis. The resulting deformation is the same as would

be produced by a tension w1 1 w2 along the central axis and

a torque w1 – w2 on the arm a/2. The centered tension does

not contribute to bending, and we neglect its effect (the rod is

taken as inextensible). The torque generates a uniform bend

with radius of curvature R into side 2 (where the extent of

phosphate neutralization is greater),

R ¼ 2B

aðw1 � w2Þ
: (21)

Table 4 shows the corresponding bending angle a, as well as

the bending angle per basepair (directly correlated with

curvature) for DNA segments of varying lengths under root-

mean-square counterion fluctuations from Eq. 13. The table

also lists values of the ratio of the bending angle a to the

root-mean-square bending angle ap that is dictated by

the experimentally determined persistence length of DNA

(150 bp) according to a standard formula (18). In other words,

we are interested in comparing a to the overall bending

fluctuation ap that is caused by the totality of equilibrated

interactions with solvent, including both counterions (con-

densed and diffuse atmospheres) and water molecules. We did

not make this comparison in Table 3 for Model IA, because

the bending in Model IA is actually a buckling mode, in the

sense that the direction of the segment at its two ends does not

change.

Class II bending fluctuations

In Class II counterion fluctuations some of the counterions

condensed on side 2 diffuse over to side 1, producing a

counterion deficit on side 2 and an excess on side 1. There-

fore an excess compression w1 emerges on side 1, and an

excess tension w2 on side 2, where as usual these quantities

are defined to be positive. The compression w1 on side 1 is

given by the negative of the right-hand side of Eq. 17 with

i ¼ 1. The tension on side 2 is given by the right-hand side

of Eq. 17 with i ¼ 2. For the condensed counterion fractions

u1 and u2, we use their root-mean-square values; for i ¼ 1, 2,

ui ¼ Æuæ1 ð�1Þi�1
du; (22)

where du equals the positive square-root of the right-hand

side of Eq. 14.

The longitudinal stresses w1 and w2 combine to produce a

tension w2 – w1 along the central axis. Indeed, we have

verified numerically (not shown) that the tension w2 is

greater than the compression w1, so that the net force along

the center is a stretch. As in Class IB, it does not contribute

to bending, hence is not further considered. Additionally, a

torque w2 1 w1 acts on the arm a/2 to generate a pure bend

with uniform radius of curvature R into side 1,

R ¼ 2B

aðw1 1w2Þ
: (23)

Table 5 shows the corresponding bending angle a for DNA

segments of varying lengths. The bend per basepair is in-

cluded as a direct measure of curvature, as well as compar-

ison with the overall bending angle calculated from the

persistence length.

DISCUSSION

We set out in this article to determine whether fluctuations in

the distribution of condensed counterions could cause a force

imbalance sufficient to ‘‘tip over’’ an otherwise stiff DNA

segment and hence to bend it. We have concluded that

asymmetric counterion fluctuations, for example, fluctua-

tions whereby some counterions move from one side of the

DNA to the other, can indeed cause significant bending.

Specifically, Tables 3–5 indicate that the three models of

fluctuations cause bending of a few degrees.

We have also compared the bending angles caused by

counterion fluctuations to the overall root-mean-square bend-

ing amplitude corresponding to the experimentally known

persistence length of DNA. Tables 4 and 5 show in the

framework of our models that counterion fluctuations can

contribute ;15% of the total statistical bending amplitude

that determines the persistence length. Of course, we have

not tried to determine the relative frequencies of counterion

and water fluctuations, so the effect of the former may be an

overestimate. On the other hand, we have calculated only the

effect of condensed counterions, and have not considered

fluctuations in the residual diffuse atmosphere, so our esti-

mate of 15% may be less than the total counterion con-

tribution. Perhaps the main point is that counterions do seem

to exert forces on the DNA structure sufficient to affect it

significantly, at least insofar as the structural features that

determine bending.

Finally, we comment on the possibility of more detailed

atomistic approaches through molecular dynamics simula-

tions. The bending considered here results from concerted

movements of a few counterions. For example, the value

du ¼ 0.092 in Table 2 for a 10-bp segment means that two

counterions move from one side of the segment to the other.

TABLE 4 Class IB bending fluctuations at 0.1 M NaCl

N a, deg a/N, deg/bp 100 3 (a/ap), %

10 2.9 0.29 14

30 4.9 0.16 14

50 6.2 0.12 13

TABLE 5 Class II bending fluctuations at 0.1 M NaCl

N a, deg a/N, deg/bp 100 3 (a/ap), %

10 3.4 0.34 17

30 6.2 0.21 17

50 8.1 0.16 18
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Depending on the comparative timescales of the lifetime

of the counterion fluctuation and the bending movement,

several such counterion fluctuations in succession may be

necessary before a perceptible bend occurs (see the discus-

sion of Brownian motion in (17)). The infrequency of these

relatively rare events should be kept in mind.
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